
Semester Project: Bluetooth Remote Control Page 1

STEPHAN Mathieu Friday, June 6, 2008

Semester Project:

Bluetooth Remote Control

Semester Project: Bluetooth Remote Control Page 2

Introduction

 In our master cursus at EPFL, we have the possibility to do a semester project on which we

have to work for 12 hours per week. The subject of this project can be either one of the suggested by

the LAP laboratory or one chosen by a student. The subject of the semester project described in this

document has been chosen by me, as it was something I wanted to do for a long time.

Semester Project: Bluetooth Remote Control Page 3

Table of contents

I) Aim of the project

II) Components choice

 - Microcontroller

 - Bluetooth chip

 - Audio codec

 - LCD screen

III) Power handling

 - Microcontroller

 - Bluetooth chip

 - Audio codec

 - LCD screen

IV) Work done

 - Components choice

 - Components placement and routing

 - Firmware creation

 - Plugin creation

 - Box creation

V) Communication overview

VI) Work done – Firmware details

 - LCD screen interfacing

 - Bluetooth module interfacing

 - Audio CODEC interfacing

 - Graphic library

 - HID device

 - Protocol used

VII) Improvements

VIII) Evolution

IX) Conclusion

Semester Project: Bluetooth Remote Control

I) Aim of the project

The goal of this project is to create a complete and functional product, starting

Thus, you will see in this report many steps described, starting from the choice of components to the

creation of DLLs for Windows.

We want to create a Bluetooth remote control having several functionalities:

- Display on a small LCD screen the tracks in the multimedia player’s

them using the keys on the

- Display on the LCD the currently played track and its playing status

- Headset functionality: it is possible to plug a standard

remote in order to use the remote control as a headset to make

- External keyboard capability: when the remote control is

appropriate USB cable, the remote will be detected as an external keyboard (using the HID

class). Thus, if the user’s computer doesn’t have a Bluetooth chip, he will still be

control his multimedia player using the special keys

- Provide a platform with free tools: the compiler and the development environment are free,

the compiled program can be sent to the microcontroller by using the USB bootloader. Thus

anyone can develop on the remote without spending money

- Good autonomy: the remote control will be powered using a lithium battery which will be

charged when the remote

Thus, the only part of the whole system on which this project relies is the Windows Bluetooth

system drivers, since we don’t take care of the low level parts of the Bluetooth communication. This

project uses the serial port profile on top of the Bluetooth stack

Semester Project: Bluetooth Remote Control

The goal of this project is to create a complete and functional product, starting

Thus, you will see in this report many steps described, starting from the choice of components to the

We want to create a Bluetooth remote control having several functionalities:

Display on a small LCD screen the tracks in the multimedia player’s playlist;

them using the keys on the remote.

the currently played track and its playing status.

Headset functionality: it is possible to plug a standard microphone and headphones on the

remote in order to use the remote control as a headset to make VoIP calls

External keyboard capability: when the remote control is connected to a computer using

USB cable, the remote will be detected as an external keyboard (using the HID

class). Thus, if the user’s computer doesn’t have a Bluetooth chip, he will still be

control his multimedia player using the special keys on the remote.

rm with free tools: the compiler and the development environment are free,

the compiled program can be sent to the microcontroller by using the USB bootloader. Thus

anyone can develop on the remote without spending money on the development tools.

Good autonomy: the remote control will be powered using a lithium battery which will be

charged when the remote is connected to a computer, using USB power.

Thus, the only part of the whole system on which this project relies is the Windows Bluetooth

em drivers, since we don’t take care of the low level parts of the Bluetooth communication. This

project uses the serial port profile on top of the Bluetooth stack on both sides.

Overview of the device

Page 4

The goal of this project is to create a complete and functional product, starting from scratch.

Thus, you will see in this report many steps described, starting from the choice of components to the

We want to create a Bluetooth remote control having several functionalities:

playlist; navigate through

microphone and headphones on the

calls.

a computer using the

USB cable, the remote will be detected as an external keyboard (using the HID

class). Thus, if the user’s computer doesn’t have a Bluetooth chip, he will still be able to

rm with free tools: the compiler and the development environment are free,

the compiled program can be sent to the microcontroller by using the USB bootloader. Thus,

the development tools.

Good autonomy: the remote control will be powered using a lithium battery which will be

using USB power.

Thus, the only part of the whole system on which this project relies is the Windows Bluetooth

em drivers, since we don’t take care of the low level parts of the Bluetooth communication. This

Semester Project: Bluetooth Remote Control

II) Components choice

 Here we will explain in details which components are chosen for this project

a) Microcontroller

 As told before, we need a microcontroller having an USB controller and

bootloader. I chose an 8-bit microcontroller from the AVR family: the AT90USB128

running at 8Mhz, has 128kB of flash memory which will be used to store the graphic library for the

LCD screen, 8kB of ram memory, an embedded USB bootloader and it is possible to compile our

program with avr-gcc before sending it to the flash

b) Bluetooth chip

 To avoid antenna dimensioning problems and parasites handling, I chose a component

having an embedded antenna. This component is the LMX9838 from National Semiconductors. It is a

Bluetooth to UART converter with an embedded

Access Profiles (GAP), Service Discovery Application Profile (SDAP) and the Serial Port Profile (SPP). It

is also possible to add a headset profile in it since the LMX9838 has a PCM controller which wil

used to route audio data to an audio codec.

c) Audio codec

 The LMX9838 supports 4 different audio codecs. I chose one of them: the Winbond W681310.

It is a low cost, low current consumption PCM audio codec.

d) LCD screen

 Since our microcontroller doesn’t have an LCD controller, we need an LCD screen that we can

communicate with a serial bus. I found

a 130*130 pixels LCD controlled using an SPI bus. Even if the communi

packet format, our microcontroller will be able to communicate with it using its SPI bus controller.

Semester Project: Bluetooth Remote Control

in details which components are chosen for this project

As told before, we need a microcontroller having an USB controller and a pre

bit microcontroller from the AVR family: the AT90USB128

running at 8Mhz, has 128kB of flash memory which will be used to store the graphic library for the

LCD screen, 8kB of ram memory, an embedded USB bootloader and it is possible to compile our

gcc before sending it to the flash memory.

To avoid antenna dimensioning problems and parasites handling, I chose a component

having an embedded antenna. This component is the LMX9838 from National Semiconductors. It is a

Bluetooth to UART converter with an embedded Bluetooth stack. It handles several profiles: General

Access Profiles (GAP), Service Discovery Application Profile (SDAP) and the Serial Port Profile (SPP). It

is also possible to add a headset profile in it since the LMX9838 has a PCM controller which wil

used to route audio data to an audio codec.

The LMX9838 supports 4 different audio codecs. I chose one of them: the Winbond W681310.

It is a low cost, low current consumption PCM audio codec.

microcontroller doesn’t have an LCD controller, we need an LCD screen that we can

I found the LCD screen used for all low cost Nokia cellular phones: it is

a 130*130 pixels LCD controlled using an SPI bus. Even if the communication is made using a 9bits

packet format, our microcontroller will be able to communicate with it using its SPI bus controller.

 Components interfacing

Page 5

in details which components are chosen for this project and why.

a pre-embedded USB

bit microcontroller from the AVR family: the AT90USB1287. It will be

running at 8Mhz, has 128kB of flash memory which will be used to store the graphic library for the

LCD screen, 8kB of ram memory, an embedded USB bootloader and it is possible to compile our

To avoid antenna dimensioning problems and parasites handling, I chose a component

having an embedded antenna. This component is the LMX9838 from National Semiconductors. It is a

It handles several profiles: General

Access Profiles (GAP), Service Discovery Application Profile (SDAP) and the Serial Port Profile (SPP). It

is also possible to add a headset profile in it since the LMX9838 has a PCM controller which will be

The LMX9838 supports 4 different audio codecs. I chose one of them: the Winbond W681310.

microcontroller doesn’t have an LCD controller, we need an LCD screen that we can

the LCD screen used for all low cost Nokia cellular phones: it is

cation is made using a 9bits

packet format, our microcontroller will be able to communicate with it using its SPI bus controller.

Components interfacing

Semester Project: Bluetooth Remote Control Page 6

III) Power handling

 Since this remote control will be powered by a Lithium-Ion battery, we have to take care not

to consume a lot of power. Here are described the different power save modes of every component.

a) Microcontroller

 The AT90USB1287 has several power-save modes. The one used in this project is the “power-

down” power-save mode. It is the lowest power consumption mode and will be activated when the

remote has not been used for a long time and no USB and Bluetooth communications are active. The

microcontroller will wake up when the user will press the menu key on the remote.

b) Bluetooth chip

 In this project the LMX9838 will use an external crystal to consume less power. It has 4

different power modes that will use depending on how the remote is currently used

c) Audio codec

 The W681310 has a power-enable pin. Thus, we will only activate the audio codec when an

audio link has been established.

d) LCD screen

 The LCD backlight is the part that consumes the more power. It will be enabled for a short

time when the user is pressing any key on the remote control. The LCD screen controller has a power

down mode where the LCD pixels driving circuit is turned off.

Using the power-saving strategy we obtain these power consumptions:

- Power save mode : 17.3 mW

- Backlight off, headset not plugged, no BT link : 94.4 mW

- Backlight off, headset plugged, no BT link : 95.2 mW

- Backlight on, headset not plugged, no BT link : 277 mW

- Backlight off, headset not plugged, data link : 118 mW

- Backlight on, headset not plugged, data link : 307 mW

- Backlight off, headset plugged, data & audio link : 177 mW

- Backlight on, headset plugged, data & audio link : 347 mW

We can see that by using all the power save modes of every component we can reduce the

power consumption by a factor of 5.5 compared to the lowest power consumption use mode. If the

remote is not used and charged for a long time, the battery won’t be fully discharged since the 3.3V

voltage regulator is not working when the voltage is lower than 3.0V. It is the same for the step-up

for the LCD backlight.

Semester Project: Bluetooth Remote Control Page 7

IV) Work done

 Here are described the different steps of the development of the Bluetooth Remote Control.

a) Components choice

 As described in the chapters above, the first step of our project was to find the correct chips

that will suit our project needs. A careful check must be done on the buses and packet format used

between the different components.

b) Components placement and routing

 As I had a precise idea of the Bluetooth general aspect and design, I chose to take care of the

printed circuit board creation.

 Three printed circuit board versions have been done in order to obtain our final result.

Bluetooth Remote Schematic

Semester Project: Bluetooth Remote Control Page 8

c) Firmware creation

The main part of this project development is the creation of the remote’s firmware (6500 lines).

Here are the several things done:

- LCD screen interfacing

- Keys interfacing (different modes)

- Bluetooth module interfacing

- Graphic library creation: lines, text, pictures, scrolling…

- Actions needed at first boot: BT profile addition, name & pin change, audio configuration...

- Protocol implementation for the dialog with the media player, using the BT serial port profile

- USB: implementation of a HID device

- Power handling: power save modes, battery voltage sensing

All the function and variables of the program are commented using doxygen. Thus, an HTML

documentation is generated so the programmer can exactly know how the general program works.

Final printed circuit board

Semester Project: Bluetooth Remote Control Page 9

d) Plugin creation

 In parallel with the firmware creation, the media player plugin was programmed. The plugin

is actually a Windows DLL created using Microsoft Visual Studio; the media player used is Winamp.

When Winamp is launched, it automatically runs an init function in our DLL located in its plugin

directory. Thus, when this init function is called a thread is created, which will be listening to our

serial port over Bluetooth, decode the requests and send the appropriate answers to the remote.

e) Box creation

 As we wanted to create a complete product, a box was designed using Solidworks and

produced using EPFL’s CNC machines.

winampGeneralPurposePlugin plugin =

{

 GPPHDR_VER, //

 "remote plugin", // Description

 init, // Initialization function

 config, // Configuration function

 quit, // Deinitialization function

 0,

 0

};

Object returned to Winamp so it knows our program is a plugin

3D box model

Semester Project: Bluetooth Remote Control

V) Communication overview

 Once the media player is launched, a Bluetooth communication is established between the

remote and the user computer. When the remote detects that the communication has been

established, it automatically sends a “get_init” message to our plugin in order to

to display on its LCD screen. It will then periodically send “get_update” packets to know if any

changes occurred (title / playlist change, currently played status update…).

 The remote only stores 16 titles in his memory. Since w

screen, 8 others are cached so they can be directly displayed when the user browse through the titles.

When the remote sees that its buffer begins to be empty, it then ask

 A home-made protocol has been implemented using the serial port. It takes care of packet

fragmenting that can occur, has a command identifier field and a variable packet size.

Communication overview between the remote and the winamp plugin

Semester Project: Bluetooth Remote Control

V) Communication overview

Once the media player is launched, a Bluetooth communication is established between the

remote and the user computer. When the remote detects that the communication has been

established, it automatically sends a “get_init” message to our plugin in order to

to display on its LCD screen. It will then periodically send “get_update” packets to know if any

changes occurred (title / playlist change, currently played status update…).

The remote only stores 16 titles in his memory. Since we can only display 8 titles on the

screen, 8 others are cached so they can be directly displayed when the user browse through the titles.

When the remote sees that its buffer begins to be empty, it then asks the plugin for the missing titles.

protocol has been implemented using the serial port. It takes care of packet

fragmenting that can occur, has a command identifier field and a variable packet size.

Communication overview between the remote and the winamp plugin

Page 10

Once the media player is launched, a Bluetooth communication is established between the

remote and the user computer. When the remote detects that the communication has been

 have the list of titles

to display on its LCD screen. It will then periodically send “get_update” packets to know if any

e can only display 8 titles on the

screen, 8 others are cached so they can be directly displayed when the user browse through the titles.

the plugin for the missing titles.

protocol has been implemented using the serial port. It takes care of packet

fragmenting that can occur, has a command identifier field and a variable packet size.

Communication overview between the remote and the winamp plugin

Semester Project: Bluetooth Remote Control Page 11

VI) Work done – Firmware details

 Here we will describe in details the work mentioned above: packets, signals…

a) LCD screen interfacing

 As previously told, the LCD screen has an integrated controller, the EPSON S1D15G10. We

can communicate with it using the SPI bus. The packet is 9 bits long, so since our microcontroller SPI

bus controller only handles 8 bit packets, we will generate the ninth bit by hand. No data can be

received by the LCD controller; the first bit of a packet is used to specify whether it is a data or

command packet. A precise procedure is given to start the lcd screen.

 The LCD controller has an integrated memory where the picture to be displayed on the

screen is stored. Pixels color is coded on 12 bits but a palette can be used to give a pixel color coded

on 8 bits. This project uses this mode.

 The LCD controller also handles screen scrolling. Thus, it will be used when the user navigates

through the titles displayed on the screen.

Initialization sequence of the LCD controller

Semester Project: Bluetooth Remote Control Page 12

b) Bluetooth module interfacing

 To communicate with the LMX9838, we use the UART controller on our microcontroller.

 The LMX9838 has a special packet format we have to respect in order to communicate with it.

Each command sent to the Bluetooth module is confirmed by the appropriate message. As our

controller can’t handle the /RTS and /CTS signals, we use the UART in 2 wire mode, so we have to be

sure that our device is fast enough to not miss any data.

Scrolling modes on the EPSON LCD controller

Packet format for the LMX9838

Semester Project: Bluetooth Remote Control Page 13

c) Audio CODEC interfacing

 The communication between the Bluetooth module and the Audio codec is done using a PCM

bus. Once we told the LMX9838 which of the Audio CODECs it supports we use, it will automatically

use the right packet format. Thus, we only have to connect the right signals between the two

components.

The Frame Sync Receive and Frame Sync Transmit inputs are connected together, as well as

the receive / master / transmit clock input as data are sent / received simultaneously.

d) Graphic library

 Several functions have been implemented in order to draw graphics needed for a correct

graphical interface. To write pixels on the LCD screen, we previously have to define to the LCD

controller a square on the screen where we will draw. Pixel data are sent one after the other until

the square has been filled. Thus, we don’t need to redraw the whole screen when something

changes, only the interesting part.

Interfaced Audio CODEC

 Pixel transfer to the LCD screen

Pixel 1 Pixel 2

Selected area

Semester Project: Bluetooth Remote Control Page 14

 One font has been implemented in this project, in three different sizes. This font is a bitmap

font, stored in memory in a binary format (‘1’ for black, ‘0’ for white) in order to not waste space.

 Thus, it is possible to write complete string on the LCD screen by displaying one character

after the other.

e) HID device

 As we want our remote control to be recognized as an external USB keyboard, we have to

implement the whole hierarchy of descriptors. When the USB device will be plugged, the operating

system will ask for them from the top to the bottom.

Binary table containing our font in different sizes

USB Descriptors tree

Semester Project: Bluetooth Remote Control Page 15

 When an USB device is plugged, the host sends to the device a “set address” packet

containing the address that it wants to assign to it. Once this packet has been acknowledged, the

device descriptor is asked.

USB device identification when plugged

Device descriptor composition (left), our device descriptor (right)

Semester Project: Bluetooth Remote Control Page 16

 For reasons that will see later, we took the Vendor and Product ID from a Cherry multimedia

keyboard. Once the device descriptor has been sent, the other descriptors are asked.

 In our configuration descriptor, we define the power needed for our device, several

attributes and the number of interfaces. Our remote control will be detected as a device which has 2

interfaces. One interface will be used for the normal keys (a to z, left/right/up/down arrow) and

another for the multimedia keys (play/pause, next / prev track, increase/decrease volume).

 For an HID device, to every interface descriptor is associated an endpoint and an HID

descriptor, so the host knows how to communicate with the device.

Configuration descriptor composition (left), our configuration descriptor (right)

Interface descriptor composition (left), our 2 interface descriptors (right)

Semester Project: Bluetooth Remote Control Page 17

 Several transfer types exist for each endpoint. The transfer type used here is Interrupt since

we will periodically check if the user pressed any key. Once the host knows how to communicate

with the device, it will ask each interface for its HID report descriptor describing which keys are on

the keyboard.

 Above is the report descriptor used for the keyboard part of our USB device. We can see that

6*8 = 48 bits will be returned indicating which keys are pressed. A key pressed is stored in one of the

6 8bits slots sent every 10ms to the host.

Endpoint descriptor composition (left), our 2 endpoints descriptors (right)

HID report descriptor for the keyboard interface

Semester Project: Bluetooth Remote Control Page 18

f) Protocol used

 As previously said, a protocol has been implemented in this project, using the serial port. The

packet format is the following:

 It can occur that the packets we receive are fragmented. Thus, we use the “packet length”

field to reconstruct them.

VII) Improvements

 Here is the list of the different things that could be improved:

- The printed circuit board size could be reduced. Indeed, because the first prototypes were

made by myself, I chose to use wide wires to easily solder the different components.

- The graphic library can be improved. Only one font is available, simple graphic effects and

shapes are available.

- The packaging can be better. The current packaging is a simple box.

VIII) Evolution

 Now we have created a complete product, we can wonder about its evolution. Because all

the tools needed to develop on this platform are free, everyone can create their own firmware. This

project has Bluetooth & USB interfaces, an LCD screen and an expansion port so many different

things can be done using this platform.

Packets used for the communication between the remote and the plugin

Packet length Packet type Packet data

Semester Project: Bluetooth Remote Control Page 19

IX) Conclusion

 In a short amount of time, I managed to create a complete and functional product using all

the means given at my disposal at EPFL. This project was very interesting for me as it needed many

different skills in many different domains.

Final version of the remote

Semester Project: Bluetooth Remote Control Page 20

Annexes

