STEPHAN Mathieu Friday, June 6, 2008

Semester Project:

Bluetooth Remote Control

Semester Project: Bluetooth Remote Control Page 1

Introduction

In our master cursus at EPFL, we have the possibility to do a semester project on which we
have to work for 12 hours per week. The subject of this project can be either one of the suggested by
the LAP laboratory or one chosen by a student. The subject of the semester project described in this
document has been chosen by me, as it was something | wanted to do for a long time.

Semester Project: Bluetooth Remote Control Page 2

Table of contents

1) Aim of the project

11) Components choice

- Microcontroller
- Bluetooth chip
- Audio codec

- LCD screen

1ll) Power handling

- Microcontroller
- Bluetooth chip
- Audio codec

- LCD screen

1V) Work done
- Components choice
- Components placement and routing
- Firmware creation
- Plugin creation
- Box creation

V) Communication overview

VI) Work done — Firmware details

- LCD screen interfacing

- Bluetooth module interfacing
- Audio CODEC interfacing

- Graphic library

- HID device

- Protocol used

Vil) Improvements
Vill) Evolution
IX) Conclusion

Semester Project: Bluetooth Remote Control Page 3

1) Aim of the project

The goal of this project is to create a complete and functional product, starting from scratch.
Thus, you will see in this report many steps described, starting from the choice of components to the
creation of DLLs for Windows.

We want to create a Bluetooth remote control having several functionalities:

- Display on a small LCD screen the tracks in the multimedia player’s playlist; navigate through
them using the keys on the remote.

- Display on the LCD the currently played track and its playing status.

- Headset functionality: it is possible to plug a standard microphone and headphones on the
remote in order to use the remote control as a headset to make VolP calls.

- External keyboard capability: when the remote control is connected to a computer using the
appropriate USB cable, the remote will be detected as an external keyboard (using the HID
class). Thus, if the user’s computer doesn’t have a Bluetooth chip, he will still be able to
control his multimedia player using the special keys on the remote.

- Provide a platform with free tools: the compiler and the development environment are free,
the compiled program can be sent to the microcontroller by using the USB bootloader. Thus,
anyone can develop on the remote without spending money on the development tools.

- Good autonomy: the remote control will be powered using a lithium battery which will be
charged when the remote is connected to a computer, using USB power.

Thus, the only part of the whole system on which this project relies is the Windows Bluetooth
system drivers, since we don’t take care of the low level parts of the Bluetooth communication. This
project uses the serial port profile on top of the Bluetooth stack on both sides.

LCD
screen

Overview of the device

Semester Project: Bluetooth Remote Control Page 4

1) Components choice

Here we will explain in details which components are chosen for this project and why.

a) Microcontroller

As told before, we need a microcontroller having an USB controller and a pre-embedded USB
bootloader. | chose an 8-bit microcontroller from the AVR family: the AT90USB1287. It will be
running at 8Mhz, has 128kB of flash memory which will be used to store the graphic library for the
LCD screen, 8kB of ram memory, an embedded USB bootloader and it is possible to compile our
program with avr-gcc before sending it to the flash memory.

b) Bluetooth chip

To avoid antenna dimensioning problems and parasites handling, | chose a component
having an embedded antenna. This component is the LMX9838 from National Semiconductors. It is a
Bluetooth to UART converter with an embedded Bluetooth stack. It handles several profiles: General
Access Profiles (GAP), Service Discovery Application Profile (SDAP) and the Serial Port Profile (SPP). It
is also possible to add a headset profile in it since the LMX9838 has a PCM controller which will be
used to route audio data to an audio codec.

c) Audio codec

The LMX9838 supports 4 different audio codecs. | chose one of them: the Winbond W681310.
It is a low cost, low current consumption PCM audio codec.

d) LCD screen

Since our microcontroller doesn’t have an LCD controller, we need an LCD screen that we can
communicate with a serial bus. | found the LCD screen used for all low cost Nokia cellular phones: it is
a 130*130 pixels LCD controlled using an SPI bus. Even if the communication is made using a 9bits
packet format, our microcontroller will be able to communicate with it using its SPI bus controller.

PCM
Bluetooth, LMX9838 <) W68310
IUART

Analog

=)

LCD screen

Components interfacing

Semester Project: Bluetooth Remote Control Page 5

111) Power handling

Since this remote control will be powered by a Lithium-lon battery, we have to take care not
to consume a lot of power. Here are described the different power save modes of every component.

a) Microcontroller

The AT90USB1287 has several power-save modes. The one used in this project is the “power-
down” power-save mode. It is the lowest power consumption mode and will be activated when the
remote has not been used for a long time and no USB and Bluetooth communications are active. The
microcontroller will wake up when the user will press the menu key on the remote.

b) Bluetooth chip

In this project the LMX9838 will use an external crystal to consume less power. It has 4
different power modes that will use depending on how the remote is currently used

c) Audio codec

The W681310 has a power-enable pin. Thus, we will only activate the audio codec when an
audio link has been established.

d) LCD screen

The LCD backlight is the part that consumes the more power. It will be enabled for a short
time when the user is pressing any key on the remote control. The LCD screen controller has a power
down mode where the LCD pixels driving circuit is turned off.

Using the power-saving strategy we obtain these power consumptions:

- Power save mode : 17.3 mW
- Backlight off, headset not plugged, no BT link : 94.4 mW
- Backlight off, headset plugged, no BT link : 95.2 mW
- Backlight on, headset not plugged, no BT link : 277 mW
- Backlight off, headset not plugged, data link : 118 mW
- Backlight on, headset not plugged, data link : 307 mW
- Backlight off, headset plugged, data & audio link : 177 mW
- Backlight on, headset plugged, data & audio link : 347 mW

We can see that by using all the power save modes of every component we can reduce the
power consumption by a factor of 5.5 compared to the lowest power consumption use mode. If the
remote is not used and charged for a long time, the battery won’t be fully discharged since the 3.3V
voltage regulator is not working when the voltage is lower than 3.0V. It is the same for the step-up
for the LCD backlight.

Semester Project: Bluetooth Remote Control Page 6

IV) Work done

Here are described the different steps of the development of the Bluetooth Remote Control.

a) Components choice

As described in the chapters above, the first step of our project was to find the correct chips
that will suit our project needs. A careful check must be done on the buses and packet format used
between the different components.

b) Components placement and routing

As | had a precise idea of the Bluetooth general aspect and design, | chose to take care of the
printed circuit board creation.

§
o Lo Lo Lv Loe T Lew
--mnnFImDnFI1nnnFImnnFImnnFImnanmunF
\FLE [BT CODEC
B 7 B El
an
= e L use P VBATS |
ane uF R vEemT =
ere [T EREVTIRN = 220F | 220F |220F
= == L
l ZeT A cobEC
o
H
=
s ook PAD1 PADZ PADS PADA PADS
= T
. e
3 AL PAS(ADE) ® o
B e R s
b §
e
s 3 =
Fhton
PBI(PCINTI/OC.OADC.1 C) D RREDE
PEGCR CINTG/OC.18) ——
PBS(PCINTSIOC 14) oo BST | geser
PEIPOO/FCINTIANS) [s g &
PEAPOPCINTID S1) Teooio 7] gio H q 8 &
PBIFPCINTIISCO B e - i B
BRI | g .
P TR Y (e o o o . [< B
PErGAIEIE SiCLI) 8 DIsPLAY | B w0 iz aw B8)
‘BCB(AI40C 34) 2 - Flis . a B = "—‘wgu_e‘"“
rEior 5o « —— = a i} 5 ~ 1
+ OO0 Pt o o e T bciir [y it 3
PLIGATIT) oPd 55 t’ MCLK By
Feaan N2} ops o [] Grike wer H— Te03_02
FLID) T Phis 3RO pomr . ko |2 o R (19002 E -
Peaes) s roo s T Fam v + E
< e a2 b e =i,
ror) | a2 o1 E . o oee] B e N |
POBCTH) T GNDz |
Posickiy [fily o P GhD4 151 uss X2
POKICPY) |3 3T EINZT] Sake GNDS STy “he
soioiT ER St & '
o B Lpcuer 8 ° g oo =
el F] o onpa [P 1000F | 10007
PERGADCTITDN) = FI T croy ne [
PFOCADCHTOON ey [s nez [FIE2 &HD =
PFSCADCETI) pesnTaTOsCH [EESELET A peser ncs RS2
ey e B R i E
e s . i
e e R vn e =
Friciac Faium [NG] e nee PO
=

Bluetooth Remote Schematic

Three printed circuit board versions have been done in order to obtain our final result.

Semester Project: Bluetooth Remote Control Page 7

Final printed circuit board

c) Firmware creation

The main part of this project development is the creation of the remote’s firmware (6500 lines).
Here are the several things done:

- LCD screen interfacing

- Keys interfacing (different modes)

- Bluetooth module interfacing

- Graphic library creation: lines, text, pictures, scrolling...

- Actions needed at first boot: BT profile addition, name & pin change, audio configuration...

- Protocol implementation for the dialog with the media player, using the BT serial port profile
- USB: implementation of a HID device

- Power handling: power save modes, battery voltage sensing

All the function and variables of the program are commented using doxygen. Thus, an HTML
documentation is generated so the programmer can exactly know how the general program works.

Semester Project: Bluetooth Remote Control Page 8

d) Plugin creation

In parallel with the firmware creation, the media player plugin was programmed. The plugin
is actually a Windows DLL created using Microsoft Visual Studio; the media player used is Winamp.
When Winamp is launched, it automatically runs an init function in our DLL located in its plugin
directory. Thus, when this init function is called a thread is created, which will be listening to our
serial port over Bluetooth, decode the requests and send the appropriate answers to the remote.

winampGeneralPurposePlugin plugin =

{

GPPHDR_VER, //

"remote plugin", // Description

init, // Initialization function
config, // Configuration function
quit, // Deinitialization function
0’

0

Object returned to Winamp so it knows our program is a plugin

e) Box creation

As we wanted to create a complete product, a box was designed using Solidworks and
produced using EPFL’s CNC machines.

3D box model

Semester Project: Bluetooth Remote Control Page 9

V) Communication overview

Once the media player is launched, a Bluetooth communication is established between the
remote and the user computer. When the remote detects that the communication has been
established, it automatically sends a “get_init” message to our plugin in order to have the list of titles
to display on its LCD screen. It will then periodically send “get_update” packets to know if any
changes occurred (title / playlist change, currently played status update...).

The remote only stores 16 titles in his memory. Since we can only display 8 titles on the
screen, 8 others are cached so they can be directly displayed when the user browse through the titles.
When the remote sees that its buffer begins to be empty, it then asks the plugin for the missing titles.

A home-made protocol has been implemented using the serial port. It takes care of packet
fragmenting that can occur, has a command identifier field and a variable packet size.

Bluetooth link

|

Get init

|

Titles to displa

|

Remote

Init done

|

[Titles displayed

What’s up?

l Nothinﬁ ‘ title chanﬁed...
What's after‘before title X?l

Communication overview between the remote and the winamp plugin

|

User scrolling....

Semester Project: Bluetooth Remote Control Page 10

VI) Work done — Firmware details

Here we will describe in details the work mentioned above: packets, signals...

a) LCD screen interfacing

As previously told, the LCD screen has an integrated controller, the EPSON S1D15G10. We
can communicate with it using the SPI bus. The packet is 9 bits long, so since our microcontroller SPI

bus controller only handles 8 bit packets, we will generate the ninth bit by hand. No data can be

received by the LCD controller; the first bit of a packet is used to specify whether it is a data or

command packet. A precise procedure is given to start the lcd screen.

Input power (VDDL VDD).

Be sure to apply POWER-ON RESET (RES
|

<Display Setting>

Display control (DISCTL)

Setting clock dividing ratic and F1/F2 drive selection:

Duty setting:

Setting reverse rotation number of line:

Common scan direction (COMSCN)

Setting scan direction

Temperature Gradient Setting (TMPGRD)

=LOW)

Oscillation ON (OSCON)

!

Sleep-out (SLIPOUT)

<Power Supply Setting>

Electronic volume control (VOLCTR)
Setting velume value o :
Setting built-in resistance value :

Power control (PIWRCTR)
Setting operation of power supply circuit:

<Display Setting 2>

Partial-in (PTLIN)/Partial-out (PTLOUT)
Setting fix area

Area scroll set (ASSET)

Setting area scroll region’

Setting area scroll type

Seroll start set (SCSTART)

Setting screll start address:

<Display Setting 3>

Data control (DATCTL)
Setting normal rotation/inversion of page address
Setting normal rotation/inversion of column address
Setting direction of address scanner:
Setting R.GB arrangement:
Setting gradation:

256-color position set (RGBSETS)
Setting color position at 236-color

|

Normal rotation of display (DISNOR)/Inversion of display (DISINV):

<<State after resetting=>
2 dividing, 8h
11h reverse rotations

COM1 - COM68, COM69 = COM13

Oscillation OFF
Sleep-in

<<State after resetting>>

0
0(3.95)

All OFF

<=State after resetting=>
Normal rotation of display
Partial-out

0

0
Full-screen scroll

0

<<State after resetting>>

Normal rotation
Normal rotation
Columa direction
RGB

8 gradations

AllO

<RAM Setting>
Page address set (PASET)
Setting start page address:
Setiing end page address:
Column address set (CASET)
Setiing start column address;
Setting end column address:

|
<RAM Write>
Memory write command (RAMWR)
Writing displayed data - Repeat as many as the number needed
and exit by entering other command.
|

<Waiting (approximately 100ms)>

Wait until the power supply voltage has stabilized

Enter the power supply control command first, then wait at least
100ms before entering the display ON command when the built-in
power supply circuit operates.

If you do not wait, an unwanted display may appear on the

liquid crystal panel

Display ON (DISON)

Initialization sequence of the LCD controller

<<State after resetting=>
[
]

0
L]

<<State after resetting=>

Display OFF

The LCD controller has an integrated memory where the picture to be displayed on the

screen is stored. Pixels color is coded on 12 bits but a palette can be used to give a pixel color coded

on 8 bits. This project uses this mode.

The LCD controller also handles screen scrolling. Thus, it will be used when the user navigates

through the titles displayed on the screen.

Semester Project: Bluetooth Remote Control

Page 11

Center screen scroll Top screen scroll Bottom screen scroll Whole screen scroll

I:I :Fixed area I - Seroll area

Scrolling modes on the EPSON LCD controller

b) Bluetooth module interfacing

To communicate with the LMX9838, we use the UART controller on our microcontroller.

E xisting device
without Bluetooth ™
LMX9838 capabilties
UART JART
30027907
FIGURE 8. Bluetooth Functionality

TABLE 13. Package Framing

Start Packet Obcode Data Check Packet End
Delimiter Type ID P Length sum Data Delimiter
1Byte 1Byte 1Byte 2 Bytes 1Byte <Data Length> 1 Byte
Bytes
------------- Checksum - ------------
Packet format for the LMX9838

The LMX9838 has a special packet format we have to respect in order to communicate with it.
Each command sent to the Bluetooth module is confirmed by the appropriate message. As our
controller can’t handle the /RTS and /CTS signals, we use the UART in 2 wire mode, so we have to be

sure that our device is fast enough to not miss any data.

Page 12

Semester Project: Bluetooth Remote Control

c) Audio CODEC interfacing

The communication between the Bluetooth module and the Audio codec is done using a PCM
bus. Once we told the LMX9838 which of the Audio CODECs it supports we use, it will automatically
use the right packet format. Thus, we only have to connect the right signals between the two
components.

)
2N
I WWER13]
B 1 vop -
w5 14 el
LMx39838 Wy i ’_z Egg ;‘r'- BE
A I
soLc el 21 BolkT was L
FIN 21 | 11
s R 1 wewk 1
=TD BCLKR YREF |-
Spp BN 23 | 131 pewr + RO 2
|—16 POMR S
UiA pac- L
LODEC PWID T gy PAO+ |2
15 1 ves
- WWEB 1310
i

Interfaced Audio CODEC

The Frame Sync Receive and Frame Sync Transmit inputs are connected together, as well as
the receive / master / transmit clock input as data are sent / received simultaneously.

d) Graphic library

Several functions have been implemented in order to draw graphics needed for a correct
graphical interface. To write pixels on the LCD screen, we previously have to define to the LCD
controller a square on the screen where we will draw. Pixel data are sent one after the other until
the square has been filled. Thus, we don’t need to redraw the whole screen when something
changes, only the interesting part.

Pixel 2 pixel 1 >

Selected area

Pixel transfer to the LCD screen

Semester Project: Bluetooth Remote Control Page 13

One font has been implemented in this project, in three different sizes. This font is a bitmap
font, stored in memory in a binary format (‘1’ for black, ‘0’ for white) in order to not waste space.

Binary table containing our font in different sizes

Thus, it is possible to write complete string on the LCD screen by displaying one character
after the other.

e) HID device

As we want our remote control to be recognized as an external USB keyboard, we have to
implement the whole hierarchy of descriptors. When the USB device will be plugged, the operating
system will ask for them from the top to the bottom.

Savicabaseriptor

bHurmrConfigurations

! .

Configuration Cunfigaration
Descriptar Desciptol
|DNum|nterraces bHuminterfaces
ntzrfaae Intcrfanc Inkarfaze mterface
Dezcriptor Crazeriptor Crescriptor Deszcriptor
bHumEncpoints bNumEndpoints bHumEndpaints bHumEndpaoirts
¥ L]

Endpoint Endpoint Endpoint Endpoint Endpcint Endpoint Endpoint Endpcint
Dazriptan Mazeriptar Mazeriptsr TJeariptar Mazeriptar M1 aaripdnr Masesiptan Nearriptar

USB Descriptors tree

Semester Project: Bluetooth Remote Control Page 14

Reset (537.4 us) 0,000 000,

Power ON 0,001 785...
Suspended (1.5 ms) 0,002 745...

Reset (10,8 ms) 0,004 235...

High speed Detection Handshake TIMECUT 0,014 246,..
Suspended {1.6 ms) 0,015 839...

Reset {12.1 ms) 0,017 423...

High speed Detection Handshake TIMECUT 0,027 434...
etDescriptar (Device) oy o oK Fs 18 bytes (12 01 1001 000000 20,..} 0,074 253...

Reset {11.1 ms) 0,079 354,.,

B High speed Detection Handshake TIMECQUT 0,089 364...

+ Setaddress (1) 0Q1y o OF F3 Mo data 0,116 966...
+ B GetDescriptar (Device) 1 i oK Fs 18 bytes (12 01 10 01 0000 00 20,..) 0,163 969..,
+ B GetDescriptor (Configuration) 1 o OF F3 9 beytes (09 02 36 00 02 01 04 AO...) 0,168 969...
+ [Ef GetDescriptor (String lang IDs) 1 o OF F3 4 bytes (04 03 09 04) 0,173 970...
+ B8 GetDescriptor (String iSerialMumber) 1 o QK F3 & bytes (08 03 31 00 ZE 00 30 00) 0,179 970...
+ B GetDescriptor (Configuration) 1 o OF F3 59 bytes (09 02 36 00 02 01 04 AQ...) 0,185 970...
+ [Ef GetDescriptor (String lang IDs) 1 o OF F3 4 bytes (04 03 09 04) 0,192 971...
+ [Ef GetDescriptor (String iProduct) 1 o OF F3 34 bytes (2203 42 00 6C 00 75 00...) 0,198 972...
+ [Ef GetDescriptor (String lang IDs) 1 o OF F3 4 bytes (04 03 09 04) 0,205 972...
+ [Ef GetDescriptor (String iProduct) 1 o OF F3 34 bytes (2203 42 00 6C 00 75 00...) 0,211 972...
+ B GetDescriptar (Device) 1 i oK Fs 18 bytes (12 01 10 01 0000 00 20,..) 0,648 006,
+ B GetDescriptor (Configuration) 1 o OF F3 9 beytes (09 02 36 00 02 01 04 AO...) 0,653 006...
+ B GetDescriptor (Configuration) 1 o OF F3 59 bytes (09 02 36 00 02 01 04 AQ...) 0,658 006...
+ SetConfiguration (1) 1 o OF F3 Mo data 0,664 006...
+ Ea GetDescriptar (String iInterface) 1 1] [o]'4 F3 3 bytes (03 03 00) 0,702 010...
+ [Ef GetDescriptor (String inkerface) 1 o OF F3 3 bytes (03 03 00) 0,722 011...
+ SetIde (Al Indsfinite) 1 i oK Fs Ma data 0,731 012..,
+ etDescriptar (Repart) 1 i oK Fs 23 bytes (05 01 09 06 A1 01 05 07,..) 0,734 011..,
+ SetIde (Al Indsfinite) 1 i oK Fs Ma data 0,754 013...
+ etDescriptar (Repart) 1 i oK Fs 50 bytes (05 0C 09 01 A1 01 8501,..) 0,757 014..,

USB device identification when plugged

When an USB device is plugged, the host sends to the device a “set address” packet
containing the address that it wants to assign to it. Once this packet has been acknowledged, the
device descriptor is asked.

1
B 4 1.1

bLength 1 MNumber Siza of the Dascrintor in Bytes (18 bytes) Y beduse
i) bDeviceClass Class information at interface level
1 bDescriptoiType 1 Constant Device Deseriptar (0x01) -
L bMaxPacketSize0 32
2 bedUSB 2 BCD (uniﬁ Specification Nurber which device complies i) idvendor CHERRY GmbH
i) idProduct 0x0004
4 bDeviceClass 1 Class Class Code (Assigned by USE Org) =
L) bedDevice 1.0
If equal to Zero, each interface specifies it's own
class code i) iMmanufacturer 1
If equal to OXFF, the class cod is vendor spscified - " "
L) iProduct 2 "Bluetooth Remote
Otherwise field is valid Class Code -
L iserialNumber 3 "1.0"
5 bDeviceSubClass 1 SubClass Subclass Code {Assigned by USB Org)
8 bDevicePratocol 1 Protocal Protocol Code (Assigned by USB Org)
7 bivaxPacketSize 1 Mumber Maximum Packet Size for Zero Endpoint. Valid

Sizes are 8, 16,32, 64

8 idVendor 2 D Vendor ID {Assigned by USB Org)
] idProduct 2 D Product ID (Assigned by Manufacturer)
12 bedDevice 2 BCD Device Release Number

14 iManufacturer 1 Index Index of Manufacturer String Descriptor
15 iProduct 1 Index Index of Product String Descriptor

15 iSerialNumber 1 Index Index of Serial Number String Descriptor
17 bNumConfigurations 1 Integer Number of Possible Configurations

Device descriptor composition (left), our device descriptor (right)

Semester Project: Bluetooth Remote Control Page 15

For reasons that will see later, we took the Vendor and Product ID from a Cherry multimedia

keyboard. Once the device descriptor has been sent, the other descriptors are asked.

bLength
1 bDescriptorType 1
2 wlotalLength 2
4 bMurnlnterfaces 1

5 bConfiguration’'alus 1

5 iConfiguration 1
7 brmAttributes 1
] baxPower 1

Number

Constant

Number

Murnber

Murnber

Index

Bitmap

ma

ME

Size of Descriptor in Bytes

Configuration Descriptor (0x02)

Total length in bytes of data returned

Murnber of Interfaces

Walue to use as an arqument to select this
configuration

Index of String Descriptor describing this
configuration

D7 Reserved, set to 1. (USE 1.0 Bus Powered)
D& Self Powered

D5 Remote Wakeup

D4..0 Reserved, set to 0

Maximurn Power Consumption in 2mA units

Q Coenfiguration descriptor ¥ oW
i) bNumInterface 2

diJ bcenfigurationvalue 1

i) iconfiguration 4

i) bmaAttributes. Supported

RemoteWakeup

i) bmaAttributes. Selffowered

Mo, Bus Powered

i) bMaxPower

100 mA

Configuration descriptor composition (left), our configuration descriptor (right)

In our configuration descriptor, we define the power needed for our device, several

attributes and the number of interfaces. Our remote control will be detected as a device which has 2

interfaces. One interface will be used for the normal keys (a to z, left/right/up/down arrow) and

another for the multimedia keys (play/pause, next / prev track, increase/decrease volume).

bLength
1 bDescriptorType
2 binterfaceMurnber
3 balternateSetting
4 bMNumEndpoints
) binterfaceClass
b hinterfaceSubClass
7 binterfaceProtocal
g ilnterface

1

1

1

1

MH

o Interface descriptor

i) binterfaceNumber

0

*®
¥

1) bAlternateSetting

1]

i) bNumENRdpoints

1

i) bInterfaceClass

Human Interface Device

i) bInterfaceSubClass

Boot Interface

i) bInterfaceProtocol

Keyboard

i) iInterface

5

o Interface descriptor

i) bInterfaceNumber

1

i) balternateSetting

o

i) bNumEndpoints

1

i) binterfaceClass

Human Interface Device

i iInterface

(]

Murnber Size of Descriptor in Bytes (8 Bytes)
Constant Interface Descriptor (0x04)
Murmber Mumber of Interface
Mumber Yalue used to select alternative setting
Mumber Number of Endpaints used for this interface
Class Class Code (Assigned by USB Org)
SubClass Subclass Code (Assigned by USB Org)
Frotocol Protocaol Code (Assigned by USE Org)
Index Index of String Descriptor Describing this interface

Interface descriptor composition (left), our 2 interface descriptors (right)

For an HID device, to every interface descriptor is associated an endpoint and an HID

descriptor, so the host knows how to communicate with the device.

e ——
Semester Project: Bluetooth Remote Control

Page 16

M“Em 0 Endpolstdescrintor v >
i) bEndpointAddress 1IN
0 bLength 1 Murnber Size of Descriptor in Bytes (7 bytes) i/ brmAttributes, TransferType | Interrupt
1 bDescriptarType 1 Constant Endpoirt Descriptor (0x05) 1 wMaxPacketSize 3 bytes
Endpoirt Address i) pInterval 10 frames (10 ms)
2 bEndpointAddress 1 Endpoint Bitg 0..3b Endpoint Mumber.
Bits 4 Gh Reserved. Set to Zero
Bits 7 Direction 0= Out, 1 = In {lgnored for Contral
Endpoints)
Q Endpoint descriptor ¥ o»
Bits 0..1 Trangfer Type A A
3 brAttributes 1 Bitmap 0 = Control 4/ bEndpointAddress 21IN
01 = Isochranous s
10 = Bulk 1) bmaAttributes. TransferType |Interrupt
11 = Intermupt i .
Bits 2.7 are resenved. If Izochranous endpaint, 1/ wMaxPacketSize 3 bytes
Bits 3.2 = Synchronisation Type (is0 Mode) -
00 = No Synchanisation L) bInterval 10 frames (10 ms)
01 = Asynchronous
10 = Adaptive
11 = Synchronoug
Bits 5 4 = Usage Type (lso hode)
00 = Data Endpoint
01 = Feedback Endpoint
10 = Explicit Feedback Data Endpoint
11 = Reserved
4 wiaxPacketSize 2 Mumber Maximum Packet Size this endpoint is capable of
sending or receiving
B binterval 1 Murber Interval for polling endpaoint data transfers. Walue in
frame counts. Ignored for Bulk & Control Endpoints.
Isachronous must equal 1 and field may range from
1 to 255 for interrupt endpoints
Endpoint descriptor composition (left), our 2 endpoints descriptors (right)

Several transfer types exist for each endpoint. The transfer type used here is Interrupt since

we will periodically check if the user pressed any key. Once the host knows how to communicate

with the device, it will ask each interface for its HID report descriptor describing which keys are on

the keyboard.

UsAcE_PAGE (Generic Desktop) 05 01

UZAGE (Keyboard) 09 0@

COLLECTION (Application) Al 01
REPORT_COUNT (&) a5 0g
EEPORT_SIZE (&) 75 08
LOGICAL_MINIMUM (0] 15 00
LOGICAL_MAIMUM {1017 25 B85
USAGE_PAGE (Keyboard) as 07
USAGE_MINIMUM (Reserved (no event indicated)) 12 00
USAGE_MAXIMUM (Keyboard Application) 29 A5
INPUT ({Data,Ary,sbs) g1 OO0

END_COLLECTION CO

HID report descriptor for the keyboard interface

Above is the report descriptor used for the keyboard part of our USB device. We can see that
6*8 = 48 bits will be returned indicating which keys are pressed. A key pressed is stored in one of the
6 8bits slots sent every 10ms to the host.

Semester Project: Bluetooth Remote Control Page 17

f) Protocol used

As previously said, a protocol has been implemented in this project, using the serial port. The
packet format is the following:

Packet length Packet type Packet data

Packets used for the communication between the remote and the plugin

It can occur that the packets we receive are fragmented. Thus, we use the “packet length”
field to reconstruct them.

VIil) Improvements

Here is the list of the different things that could be improved:

- The printed circuit board size could be reduced. Indeed, because the first prototypes were
made by myself, | chose to use wide wires to easily solder the different components.

- The graphic library can be improved. Only one font is available, simple graphic effects and
shapes are available.

- The packaging can be better. The current packaging is a simple box.

VIII) Evolution

Now we have created a complete product, we can wonder about its evolution. Because all
the tools needed to develop on this platform are free, everyone can create their own firmware. This
project has Bluetooth & USB interfaces, an LCD screen and an expansion port so many different
things can be done using this platform.

Semester Project: Bluetooth Remote Control Page 18

IX) Conclusion

In a short amount of time, | managed to create a complete and functional product using all

the means given at my disposal at EPFL. This project was very interesting for me as it needed many
different skills in many different domains.

W e— -

OANman

| Fin oumber o ‘
Blustooth nane |
Battery voltage |
et Dis UBH beus)

Final version of the remote

Semester Project: Bluetooth Remote Control Page 19

Annexes

Semester Project: Bluetooth Remote Control Page 20

