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When dealing with the practical
implementation of RF applica-

tions there are always some tasks that
appear nightmarish. One of these is
the need to match the different imped-
ances of the interconnected block.
Typically these include the antenna to
low-noise amplifier (LNA), RF ouput
(RFOUT) to anten-
na, LNA output to
mixer input, etc.
The matching task
is required for a
proper transfer of
signal and energy
from a "source" to
a "load". 

At high radio
frequencies, the
spurious (wires
inductances, inter-
layers capaci-
tances, conductors
resistances, etc)
elements have a
significant, yet
u n p r e d i c t a b l e
impact upon the
matching network.
Above a few tenths
of MHz, theoretical
calculations and
simulations are
often insufficient.
In-situ RF lab
measurements, along with tuning
work, have to be considered for deter-
mining the proper final values. The
computational values are required to
set up the type of structure and target
component values.

There are many possible ways to do
impedance matching. Some are:

• Computer simulations–Complex
to use since such simulators are dedi-
cated for differing design functions
and not to impedance matching. The

designer has to be familiar with the
multiple data inputs that need to be
entered and the correct formats. They
also need the expertise to find the use-
ful data among the tons of results
coming out. In addition, circuit simu-
lation software is not pre-installed on
computers unless they are dedicated
to such an application.

• Manual computations–Tedious
due to the length ("kilometric") of the
equations and the complex nature of

the numbers to be manipulated.
• Instinct–This can be acquired only

after one has devoted many years to
the RF industry. In short, this is for
the super-specialist!

• Smith Chart–Upon which this
article concentrates.

The primary objective of this article
is to refresh the Smith chart’s con-
struction and background, and to sum-
marize practical ways to use it. 

Topics addressed will include practi-

cal illustrations of parameters such as
finding matching network componentS
values. Of course, matching for maxi-
mum power transfer is not the only
thing one can do with Smith charts.
They can also help the designer opti-
mize for the best noise figures, insure
quality factor impact, asses stability
analysis, etc.

A quick primer
Before introducing the Smith chart

utilities, it would
be prudent to pre-
sent  a  short  re -
fresher on wave
propagation phe-
nomenon  f o r  IC
wiring under RF
conditions (above
100  MHz) .  Th i s
can be true for con-
tingencies such as
RS485 lines, be-
tween a PA and an
antenna, between
a LNA and down-
converter/mixer,
etc.

It is well known
that  t o  ge t  the
maximum power
t rans fe r  f r om a
source to a load,
the source imped-
ance must equal
the complex conju-
gate of load imped-
ance, or :

Rs + jXs = RL – jXL                                                   (1)

For this condition, the energy trans-
ferred from the source to the load is
maximized. In addition, for efficient
power transfer, this condition is
required to avoid the reflection of ener-
gy from the load back to the source.
This is particularly true for high fre-
quency environments like video lines
and RF and microwave networks.

Impedance matching and the Smith
chart – The fundamentals.
Tried and true, the Smith chart is still the basic tool for determining
transmission line impedances.

By K-C Chan & A. Harter
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Fundamentals of impedance and the Smith chart.
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What it is
A Smith chart is a circular plot with

a lot of interlaced circles on it. When
correctly used, matching impedances,

with apparent complicate structures,
can be made without any computation.
The only effort required is the reading
and following of values along the circles.

The Smith chart is a polar plot of
the complex reflection coefficient (also
called gamma and symbolized by Γ).
Or, mathematically defined as the 1-
port scattering parameter s or s11.

A Smith chart is developed by
examining the load where the imped-
ance must be matched. Instead of con-
sidering its impedance directly, one
expresses its reflection coefficient ΓL,
which is used to characterize a load
(such as admittances, gain, transcon-
ductances, etc). The ΓL is more useful
when dealing with RF frequencies. 

We know the reflection coefficient is
defined as the ratio between the
reflected voltage wave and the inci-
dent voltage wave :

The amount of reflected signal from
the load is dependent on the degree of
mismatch between the source imped-
ance and the load impedance. Its
expression has been defined as follows:

(2.1)

Since the impedances are complex
numbers, the reflection coefficient will
be a complex number as well.

In order to reduce the number of
unknown parameters, it is
useful to freeze the ones
that appear often and are
common in the applica-
tion. Here Zo (the charac-
teristic impedance) is
often a constant and a
real industry normalized
value ie: 50 Ω, 75 Ω, 100
Ω, 600 Ω, etc. We can then
define a normalized load
impedance by:

z = ZL/Zo =  (R + jX) / Zo =  r + jx     (2.2)

With this simplification, we can
rewrite the reflection coefficient for-
mula as:

(2.3)

Here one can see the direct rela-
tionship between the load imped-
ance and its reflection coefficient.
Unfortunately the complex nature of
the relation is not practically useful,
so we can use the Smith chart is a
type of graphical representation of
the above equation.

To build the chart, the equation
must be re-written to extract standard
geometrical figures (likes circles or
stray lines).

First, equation 2.3 is reversed to
give:

(2.4)

and,

(2.5)

By setting the real parts and the
imaginary parts of (equation 2.5)
equal, we obtain two independent new
relationships:

(2.6)

(2.7)

Equation (2.6) is then manipulated, by
developing equations (2.8) through
(2.13), into to the final equation (2.14).
This equation is a relationship in the
form of a parametric equation (x-a)2 +
(y-b)2 = R2),in the complex plane (Γr,
Γi), of a circle centered at the coordi-
nates (r/r+1, 0), and having a radius of
1/1+r.
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Figure 1. Diagram of Rs + jXs = RL – jXL 
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Figure 2. Impedance at the load.

r=0 (short)
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r=∝  (open)

r=1

Γi

Γr

Figure 3. The points situated on a circle are all
the impedances characterized by a same real
impedance part value. For example, the circle, R
= 1, is centered at the coordinates (0.5, 0) and has
a radius of 0.5. It includes the point (0, 0) which is
the reflection zero point (the load is matched with
the characteristic impedance). A short-circuit, as
a load, presents a circle centered at the coordi-
nate (0, 0) and has a radius of 1. For an open-cir-
cuit load, the circle degenerates to a single point
(centered at 1, 0 and has a radius of 0). This cor-
responds to a maximum reflection coefficient of
1, at which all of the incident wave is totally
reflected.
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2.13)

2.14)
(See Figure 3 for further details)

When developing the Smith chart,
there are certain precautions that
should be noted. Among the more
important are:

• All the circles have one same,
unique intersecting point at the coor-
dinate (1, 0).

• The zero Ω circle where there is
no resistance (r = 0) is the largest one.

• The infinite resistor circle is
reduced to one point at (1, 0).

• There should be no negative resis-
tance. If one (or more) should occur,
we will be faced with the possiblity of
oscillatory conditions.

• Another resistance value can be
chosen by simply selecting another cir-
cle, corresponding to the new value.

Back to the drawing board
Moving on, we use equations (2.15)

through (2.18) to further develop equa-
tion (2.7) into another parametric
equation. This results in equation
(2.19).

(2.15)

(2.16)

(2.17)

(2.18)

(2.19)
(See Figure 3a for further details)

Again, 2.19 is a parametric equation of
the type (x-a)2 + (y-b)2 = R2,  in the
complex plane (Γr, Γ i), of a circle cen-

tered at the coordinates (1, 1/x)
and having a radius of 1/x.

Get the picture?
To complete our Smith chart,

we superimpose the two circle’s
families. It  can then be seen
that all of the circles of one fam-
ily will intersect all of the circles
of the other family. Knowing the
impedance, in the form of: r + jx,
the corresponding reflection
coefficient can be determined. It
is only necessary to find the
intersection point of the two cir-
cles, corresponding to the values
r and x.

It’s reciprocating too
The reverse operation is also

possible. Knowing the reflection
coefficient, find the two circles
intersecting at that point and
read the corresponding values r
and x on the circles. The proce-
dure for this is as follows:

• Determine the imped-
ance as a spot on the
Smith Chart.

• Find the reflection
coefficient (Γ) for the
impedance.

• Having the character-
istic impedance and Γ ,
find the impedance.

• Convert the imped-
ance to admittance.

• Find the equivalent
impedance.

• Find the components
values for the wanted
reflection coefficient (in
particular the elements of
a matching network see
Figure 6).

To extrapolate
Since the Smith chart

resolution technique is
basically a graphical
method, the precision of the solutions
depends directly on the graph defini-
tions. Here are some  examples that
can be represented by the Smith chart
for RF applications:

• Example 1: Consider the charac-
teristic impedance of a 50 Ω termina-
tion and the following  impedances:

Z1 = 100 + j50 Ω Z2 = 75 –j100 Ω, Z3 =
j200 Ω, Z4 = 150 Ω, Z5 = ∞ (an open-cir-
cuit) Z6 = 0 (a short circuit), Z7 = 50 Ω,
Z8 = 184 –j900 Ω.

Then,  normalize and plot  (see
Figure 5.) The points are plotted as
follows:

z1 = 2 + j, z2 = 1.5 –j2, z3 = j4, z4 = 3,
z5 = 8, z6 = 0, z7 = 1, z8 = 3.68 –j18S.

• It is now possible to directly
extract the reflection coefficient Γ on
the Smith chart of Figure 5. Once the
impedance point is plotted  (the
intersection point of a constant resis-
tance circle and of a constant reac-

Γ Γr i
x x

−( ) + −





=1
1 12

2

2

Γ Γ Γ Γr r i i
x

x x

2 2

2 2

2 1
2

1 1
0

− + + −





+ − =

Γ Γ Γ Γr r i i
x

2 22 1
2

0− + + −





=

1 2
22 2+ − + =Γ Γ Γ Γ

r r i
i

x

x x x xr r i i+ − + =Γ Γ Γ Γ2 22 2

Γ Γr i
r

r r
−

+






+ =
+





1

1
1

2
2

2

Γ Γr i
r

r
r
r

r

r r

−
+







+ = −
+

+
+( )

=
+( )

1
1
1

1

1

1

2
2

2

2 2

Figure 3a. The points situated on a circle are all the impedances
characterized by a same imaginary impedance part value x. For
example, the circle x = 1 is centred at coordinate (1, 1) and having a
radius of 1. All circles (constant x) include the point (1, 0). In
Differing with the real part circles, x can be positive or negative.
This explain the duplicate mirrored circles at the bottom side of the
complex plane. All the circles centers are placed on the vertical
axis, intersecting the point 1.

Γi

Γr0 0.5 1

Figure 4. The points situated on a circle are all the imped-
ances characterized by an identical imaginary impedance
part value x. The circle x = 1 is centered at coordinate (1, 1)
and has a radius of 1. Furthermore, x can be positive or
negative, which explains the duplicate mirror circles at the
bottom side of the complex plane. Note that the zero-reac-
tance circle (a pure  resistive load) is just the horizontal
axis of the complex plane. The infinite reactance has
degenerated to one point situated at (1, 0). All constant
reactance circles have the same unique intersecting point
at 1, 0.  Positive reactances (inductors) are on the circles
on the upper half, while negative reactances (capacitors)
are on the bottom half. 
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tance circle), simply read the rectan-
gular coordinates projection on the
horizontal and vertical axis. This will
give Γr, the real part of the reflection
coefficient) and  Γ i, the imaginary
part of the reflection coefficient  (see
Figure 6).

• It is also possible to take the eight
cases presented in Example 1 and
extract their corresponding Γ directly
from the Smith chart of Figure 5. The
numbers are:

Γ1 = 0.4 + 0.2j, Γ2 = 0.51 - 0.4j, Γ3 =
0.875 + 0.48j Γ4 = 0.5, Γ5 = 1, Γ6 = -1, Γ7
= 0, Γ8 = 0.96 - 0.1j.

Working with admittance
The Smith chart is built by consid-

ering impedance (resistor and reac-
tance). Once the Smith chart is built,
it can be used to analyze these para-
meters in both the series and parallel
worlds. Adding elements in a series is
straightforward. New elements can be

added and their effects determined by
simply moving along the circle to their
respective values.  However, summing
elements in parallel is another matter.
It requires considering additional
parameters. Often, it is easier to work
with parallel elements in the admit-
tance world.

We know that, by definition, Y = 1/Z
and Z = 1/Y. The admittance is
expressed in mhos or Ω−1 (in earlier
times it was expressed as Siemens or

Figure 5. Points plotted on the Smith chart.
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S). And, since Z is complex, Y must
also be complex.

Therefore, Y = G + jB, (2.20) where
G is called “conductance” and B the
“susceptance” of the element. One
must exercise caution, though. By fol-
lowing the logical assumption, one
may  conclude that G = 1/R and B =

1/X. This, however, is
not the case. If  this
assumption is used, the
results will be incor-
rect.

When working with
admittance, the first
thing that one must do
is normalize  y = Y/Yo.
This results in y = g +
jb. So, what happens to
the reflection coeffi-
cient? By working
through the following :

:

(2.21)

It turns out that the
expression for G is the
opposite, in sign, of z,
and Γ(y) = –Γ(z).

If we know z, we can
invert the signs of Γ and
find a point situated at
the same distance from
(0, 0), but in the opposite
direction. This same
result can be obtained by
rotating an angle 180°
around the center point
(see Figure 7).

Of course, while Z and
1/Z do represent the
same component, the
new point appears as a
different impedance

(the new value has a different point in
the Smith chart and a different reflec-
tion value, etc.). This occurs because
the plot is an impedance plot. But the
new point is, in fact, an admittance.
Therefore, the value read on the chart
has to be read as mhos.

While this method is sufficient for

making conversions, it does not work
for determining circuit resolution when
dealing with elements in parallel.

The admittance Smith chart
In the previous discussion we saw

that every point on the impedance
Smith chart can be converted into its
admittance counterpart by taking a 180°
rotation around the origin of the Γ com-
plex plane. Thus, an admittance Smith
chart can be obtained by rotating the
whole impedance Smith chart by 180°.
This is extremely convenient since it
eliminates the necessity to build another
chart. The intersecting point of all the
circles (constant conductances and con-
stant susceptances) is at the point (-1, 0)
automatically. With that plot, adding
elements in parallel also becomes easier.
Mathematically, the construction of the
admittance Smith chart is created by:

(3.1)

then, reversing the equation:

(3.2)

(3.3)

Next, by setting the real and the
imaginary parts of Equation 3.3 equal,
we obtain two new, independent rela-
tionships:

(3.4)

(3.5)

By developing Equation 3.4 we get:
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Figure 6. Direct extraction of the reflected coefficient ΓΓ,,  real and
imaginary along the X-Y axis.

x = 0.9 x = -1.4 x = 1

Z = ? b = 1.1
b = -0.3 r = 1

Figure 8. A multi-element circuit.



62 www.rfdesign.com July 2000

(3.10)

(3.11)

(3.12)

Which again is a parametric equa-
tion of the type (x-a)2 + (y-b)2 = R2

(Equation 3.12), in the complex plane
(Γ r, Γ i), of a circle with its coordi-
nates centered at (-g/g+1 , 0) and hav-
ing a radius of 1/(1+g). Furthermore,
By developing (Equation 3.5), we show
that :

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)

which is again a parametric equation
of the type (x-a)2 + (y-b)2 = R2

(Equation 3.17).

Equivalent impedance resolution
When solving problems where ele-

ments in series and in parallel are
mixed together, one can use the same
Smith chart and rotate it around any
point where conversions from z to y or
y to z exist. 

Let’s consider the network of Figure
8 (the elements are normalized with Zo
= 50 Ω). The series reactance (x) is
positive for inductance and negative
for capacitors. The susceptance (b)
is positive for capacitance and nega-
tive for inductance.

The circuit needs to to be simplified
(see Figure 9). Starting at the right
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Figure 9. The network of Figure 8 with its elements broken out for analysis.
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side, where there is a resistor and
inductor with a value of 1, we plot a
series point where the r circle = 1 and
the l circle = 1. This becomes point A.
Since the next element is an element
in shunt (parallel), we switch to the
admittance Smith chart (by rotating
the whole plane 180°). To do this, how-
ever, we need to convert the previous
point into admittance. This becomes
A’. We then rotate the plane by 180°.
We are now in the admittance mode.
The shunt element can be added by
going along the conductance circle by a
distance corresponding to 0.3. This

Figure 12. The network of Figure 11 with its points plotted on the Smith chart.

ZS = 25 - j15 Ω

VS Z* = 
25 + j15 Ω

L = ?

C = ?

ZL = 100 - j25 Ω

Figure 11. The representative circuit with know impedances and unknown components.
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must be done in a counter-clockwise
direction (negative value) and gives
point B. Next, we have another series
element. We again switch back to the
impedance Smith chart. Before doing
this, it is again necessary to reconvert
the previous point into impedance (it
was an admittance). After the conver-
sion, we can determine B’. Using the
previously established routine, the
chart is again rotated  180° to get back
to  the impedance mode. The series
element is added by following along
the resistance circle by a distance cor-
responding to 1.4  and marking point
C. This has to be done counter-clock-
wise (negative value). For the next ele-
ment, the same operation is  per-
formed(conversion into admittance
and plane rotation). Then move the
prescribed distance (1.1), in a clock-
wise direction (since the value is posi-
tive), along the constant conductance
circle. We mark this as D. Finally, we
reconvert back to  impedance mode
and add the last element (the series
inductor). We then determine the
required value, z, located at the inter-
section of resistor circle 0.2 and reac-
tance circle 0.5. Thus z is determined
to be 0.2 +j0.5. If the system charac-
teristic impedance is 50 Ω, then Z = 10
+ j25 Ω (see Figure 10).

Matching impedances by steps
Another function of the Smith chart

is the ability to determine impedance
matching. This is the reverse opera-
tion of finding the equivalent imped-
ance of a given network. Here, the
impedances are fixed at the two access
ends (often the source and the load) as
shown in Figure 11. The objective is to
design a network to insert between
them so that proper impedance match-
ing occurs. 

At first glance, it appears that is is
no more difficult than finding equiva-
lent impedance. But the problem is
that an infinite number of matching
network component combinations can
exist that create similar results. And,
other inputs may need to be consid-
ered as well (filter type structure, qual-
ity factor, limited choice of components,
etc.).

The approach chosen to accomplish
this calls for adding series and shunt
elements on the Smith chart until the
desired impedance is achieved.
Graphically, it appears as finding a
way to link the points on the Smith
chart.

Again, the best method to illustrate
the approach is to address the require-
ment as an example.

The objective is to match a source
impedance (ZS) to a load (ZL) at the
working frequency of 60 MHz (see
Figure 11). The network structure has
been fixed as a lowpass, L type (an
alternative approach is to view the
problem as how to force the load to
appear like an impedance of value = ZS
(a complex conjugate of ZS). Here is
how the solution is found.

The first thing to do is to normalize
the different impedance values. If this
is not given, choose a value that is in
the same range as the load/source val-
ues. Assume Zo to be 50 Ω. Thus zS =
0.5 –j0.3, z*S =  0.5 + j0.3 and ZL = 2
–j0.5.

Next, position the two points on the
chart. Mark A for zL and D for Z*S.

Then identify the first element con-
nected to the load (a capacitor in
shunt) and convert to admittance.
This gives us point A’.

Determine the arc portion where
the next point will appear after the
connection of the capacitor C. Since we
don’t know the value of C, we don’t
know where to stop. We do, however,
know the direction. A C in shunt
means move in the clock-wise direc-
tion on the admittance Smith chart
until the value is found. This  will  be
point B (an admittance). Since the
next element is a series element, point
B has to be converted to the imped-
ance plane. Point B’ can then be
obtained. Point B’ has to be located on
the same resistor circle as D.
Graphically, there is only one solution
from A’ to D, but the intermediate
point B (and hence B’) will need to be
verified by a  “test-and-try” setup.
After having found points B and B’, we
can measure the lengths of arc A’ – B
and arc B’ – D. The first gives the nor-
malized susceptance value of C. The
second gives the normalized reactance
value of L. The arc A’ – B measures b
= 0.78 and thus B = 0.78 x Yo = 0.0156
mhos. Since ωC  =  B, then C = B/ω =
B/(2 π f) = 0.0156/(2 π 607)  = 41.4 pF.
The arc B –- D measures x  =  1.2, thus
X = 1.2 x Zo =  60 Ω. Since ωL  =  X,
then L  =  X/ω =  X/(2 π f)  =  60/(2 π
607)  =  159 nH.

Conclusion
Given today’s wealth of software

and accessibility of high-speed, high-
power computers, one may question

the need for such a basic and funda-
mental method for determining circuit
fundamentals.

In reality, what makes an engineer
a  real engineer is not only academic
knowledge, but the ability to use
resources of all types to solve a prob-
lem. It is easy to plug a few numbers
into a program and have it spit out the
solutions. And, when the solutions are
complex and multifaceted, having a
computer handy to do the grunt work
is “back-savingly” handy.

However, knowing underlying theo-
ry and principles that have been port-
ed to computer platforms, and where
they came from, makes the engineer or
designer a more well rounded and con-
fident professional–and makes the
results more reliable. 
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